Automatic Music Transcription and Audio Source Separation

نویسندگان

  • Mark D. Plumbley
  • Samer A. Abdallah
  • Juan Pablo Bello
  • Mike E. Davies
  • Giuliano Monti
  • Mark B. Sandler
چکیده

2 In this article, we give an overview of a range of approaches to the analysis and separation of musical audio. In particular, we consider the problems of automatic music transcription and audio source separation, which are of particular interest to our group. Monophonic music transcription, where a single note is present at one time, can be tackled using an autocorrelation-based method. For polyphonic music transcription, with several notes at any time, other approaches can be used, such as a blackboard model or a multiple-cause/sparse coding method. The latter is based on ideas and methods related to independent component analysis (ICA), a method for sound source separation. scene analysis 3 Over the last decade or so, and particularly since the publication of Bregman's seminal book on Auditory Scene Analysis (Bregmann 1990), there has been an increasing interest in the problem of Computational Auditory Scene Analysis (CASA): how to design computer-based models that can analyze an auditory scene. Imagine you are standing in a busy street among a crowd of people. You can hear traffic noise, footsteps of people nearby, the bleeping of a pedestrian crossing, your mobile phone ringing, and colleagues behind you having a conversation. Despite all these different sound sources, you have a pretty good idea of what is going on around you. It is more than just a mess of overlapping noise, and if you try hard you can concentrate on one of these sources if it is important to you (such as the conversation behind you). This has proved to be a very difficult problem. It requires both separation of many sound sources, and analysis of the content of these sources. However, a few authors have begun to tackle this problem in recent years, with some success (see e.g. Ellis 1996). One particular aspect of auditory scene analysis of interest to our group is automatic music transcription. Here, the sound sources are one or more instruments playing a piece of music, and we wish to analyze this to identify the instruments that are playing, and when and for how long each note is played. From this analysis we should then be able to produce a written musical score that shows notes and the duration of each on a written conventional music notation (for conventional western music, at least). In principle, this musical score could then be used to recreate the musical piece that was played. We …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Computational Model for Multi - Instrument Music Transcription CS 229 Final Project Report , Autumn 2013

The aim of our project is to build a model for multi-instrument music transcription. Automatic music transcription is the process of converting an audio wave file into some form of music notes representations. We propose a two-step process for an automatic multiinstrument music transcription system including timbre classification and source separation using probabilistic latent component analysis.

متن کامل

Harmonic Single Channel Source Separation

Sound source separation has become a popular research topic in computer audition due to its wide range of applications in the analysis and manipulation of audio data. Applications of audio source separation include music information retrieval, automatic transcription of music, and sampling of musical sounds for electronic music composition amongst many others. Through this paper, different algo...

متن کامل

Multi-pitch and periodicity analysis model for sound separation and auditory scene analysis

A model for multi-pitch and periodicity analysis of complex audio signals is presented that is more efficient and practical than the Meddis and O’Mard unitary pitch perception model, yet exhibits very similar behavior. In this paper we also demonstrate how to apply this model to source separation of complex audio signals such as polyphonic and multi-instrumental music and mixtures of simultaneo...

متن کامل

Block Nonnegative Matrix Factorization for Single Channel Source Separation

Nonnegative Matrix Factorization (NMF) [1, 2] has been widely used in audio research, e.g. automatic music transcription [3], musical source separation [4], and speech enhancement [5]. The key strategy for applying NMF to audio-related tasks is to find a lower rank representation of the Short Time Fourier Transformed (STFT) input signal and use the basis vectors as dictionaries. For example, in...

متن کامل

Drum Transcription Based on Independent Subspace Analysis

In automatic music transcription, metadata extraction from recorded audio data or speaker separation in video conferencing, it is a significant prerequisite task to analyze and separate the audio signal into their original source components. In this report, I study and analyze a set of methods of the extraction of percussive instruments metadata from polyphonic music. It mainly focuses on the s...

متن کامل

Score-Informed Sparseness for Source Separation

Audio source separation is a useful preprocessing step for remixing or transcription of music. It can be shown, that the separation quality increases, if the separation algorithm gets additional side information, e.g. the score of the current mixture [5]. In many cases the score of a musical piece is not available and has to be extracted by a professional musician or an automatic music transcri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cybernetics and Systems

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2002